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Abstract—In computer vision, it is common to require operations on matrices with “missing data,” for example, because of occlusion or

tracking failures in the Structure from Motion (SFM) problem. Such a problem can be tackled, allowing the recovery of the missing

values, if the matrix should be of low rank (when noise free). The filling in of missing values is known as imputation. Imputation can also

be applied in the various subspace techniques for face and shape classification, online “recommender” systems, and a wide variety of

other applications. However, iterative imputation can lead to the “recovery” of data that is seriously in error. In this paper, we provide a

method to recover the most reliable imputation, in terms of deciding when the inclusion of extra rows or columns, containing significant

numbers of missing entries, is likely to lead to poor recovery of the missing parts. Although the proposed approach can be equally

applied to a wide range of imputation methods, this paper addresses only the SFM problem. The performance of the proposed method

is compared with Jacobs’ and Shum’s methods for SFM.

Index Terms—Imputation, missing-data problem, rank constraint, singular value decomposition, denoising capacity, structure from

motion, affine SFM, linear subspace.
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1 INTRODUCTION

SEVERAL problems in computer vision (and beyond) can be
reduced to fitting a large matrix to its closest low-rank

approximation: The factorization method under affine
models of Structure from Motion (SFM) [16], [17], [20], [26],
optical flow estimation in multiframe video [12], [13],
subspace constraints in face recognition and indexing, pose
determination, data mining, and a plethora of related
problems (e.g., customer modeling and recommender sys-
tems [3], [22]).

In this paper, we restrict our application to the structure
from motion in an affine camera setting, although this is to
make the problem concrete rather than to exploit any special
structure of that problem. Indeed, we do not use any features
of the problem formulation that is specific to the particular
application (see Section 1.1), so we will generically say that
the matrix M (of dimension m� n and with real number
entries) should be (without noise) of rank r << minfm;ng. A
consequence of the matrix being of rank r is that it can be
factored intoRS for real rank-rmatricesR of sizem� r andS

of size r� n, and vice versa. For the SFM problem, we are, of
course, interested in particular factors (the factorization is not
unique because for any invertible matrix G of size r� r we
have RS ¼ ðRGÞðG�1SÞ). However, for other problems, we
are not interested in any of the factors per se, but we are
interested in the projection onto a low rank matrix to reduce
noise, to fill in missing data, or extrapolate to as yet
uncollected data. For example, we may wish to exploit the
low rank constraint to assist in the feature point-matching
problem (predicted search ranges) or to extrapolate tracks.

In most real-world problems, noise is inevitably intro-
duced in the data. In the presence of noise, the measure-
ment matrix quickly becomes full-rank. Thus, the matrix
has to be projected upon its low-rank approximation Mr

minimizing mean squared error (using Frobenius norm):

M�Mrk k2F : ð1Þ

The singular value decomposition (SVD) gives the best
solution to this problem [8]: M ¼ UDVT , Mr ¼ UDrVT ,
where Dr is obtained by setting to 0 all of the singular
values except the r largest ones. This is classical and is the
starting point of the original factorization method for SFM
and, hence, for many of its variants.

We could equivalently seek the rank-r factors explicitly
in the formulation. That is, finding R of size m� r and S of
size r� n, that minimize

M�RSk k2F : ð2Þ

In such cases, one can side-step directly computing the
“clean” Mr (the reprojected points in SFM terminology).

The issues to solve, other than computational efficiency
issues, include: how to deal with missing values and how to
deal with large amounts of data or data that is arriving
sequentially. We will focus here on the first problem and an
algorithm is presented in Section 4.3.

1.1 Missing-Data Problem in SFM

In SFM, one starts from the mathematical relationship
between the measurement matrixM (coordinates of features
tracked through frames), the object-cameramotionmatrixR,
and the structure/shape matrix S. In the nondegenerate
cases, and assuming an affine camera, the measurement
matrix, should be exactly of rank 4. However, one can exploit
the special structure: the “registered” measurement matrix,
formed by subtracting the center of mass of the image points
from their coordinates, which should be of rank 3 [16], [17],
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[20], [26], and one can even reduce the problem to a rank-1
problem [1].

Regardless of what formulation, in terms of rank, the
SVD cannot be directly used if some of the data are
unavailable. This issue has been regarded [14], [15], [21] as
the major drawback of the factorization method. Attempts
to apply a subspace projection approach, in the presence of
missing data, can be divided into two categories:

1. Those that attempt to “fill in” (or impute) the missing
values:

a. The seminal approach of Tomasi andKanade [26]
where the filling in is called “hallucination.” In
their somewhat heuristic approach to themissing
data subproblem, a full submatrix (no missing
entries) is first decomposed by the factorization
method and then the initial solution grows by
one row or by one column at a time, hallucinating
missing data. The final estimate is then refined by
employing a steepest descent minimization
method on a least squares fitting criterion (2)
M�RS�Ck k2F , where the inclusion ofCmakes
the adjustment for the registration.

b. Jacobs’ method [14], [15] treated each column,
with some missing entries, as an affine subspace
and solved the problem by obtaining the inter-
section of all the quadruple (in practice, a large
selection of) affine subspaces. Unknown entries
are recovered by finding, for each column, the
least squares regression onto this subspace.

2. Methods that directly obtain the factors—thus not
imputing the measurement matrix (directly), e.g.,
Shum’smethod [23] andGuerreiro andAguiar’swork
[9]. Though Shum’s method was not originally
formulated for SFM (see Section 1.2), Jacobs [14], [15]
suggested that it couldbe applied to the SFMproblem.
We note that Shum’s formulation uses dataweighting
to incorporate confidence measures, an elaboration
not essential to our exposition. In essence, themethod
iteratively solves coupled least squares problems for
the factors starting from the formulation of (2), but
modifying the Frobenius norm so that only entries for
measured data are involved, and adding the weights
as mentioned previously. Since the formulation is
bilinear in the factors, one canhold one factor constant
and solve a linear least square problem for the other
factor. Thus, the missing data are only indirectly
imputed (one can “reproject” the recovered structure
onto the images).

TomasiandKanade’sapproachto theproblemofocclusion
[26] has the following disadvantages: needing to start from a
complete submatrix (it is an NP-hard problem of finding the
largest complete submatrix), asymmetric usage of the data,
and error propagation, as pointed out by Jacobs [14], [15].

The greatest advantage of Jacobs’ method lies in the fact
that it does not need to start from a complete submatrix.
Ideally, for a generic problem, all the quadruple affine
subspaces should be utilized in order to obtain a good result.
In practice, a selection of the affine subspaces is needed.
However, in the severe noise case, using only a small portion
of the affine subspaces may produce unsatisfactory results.

Intrinsically, Jacobs’ linear approach can be employed in any
missing-data problems under low-rank constraint; however,
better performance for the SFM problem can be obtained
because some “outlier” detection strategies are used, by
incorporating the specialty of the SMF problem; while, for a
general low-rank problem, the performance of the generic
algorithm proved to be far away from the optimal solution,
especially when there is a lot of missing data.

Onedrawbackof Shum’s approach is itsdependence onan
initial matrix, although a random initial matrix works when
the percentage of the missing data is low and the data is not
highly corrupted by noise. Even taking Jacobs’ result as its
initial point, Shum’s approach still tends to diverge when
there is a lot of missing data, especially for the generic low-
rank problems.

Recently, by combining Jacobs’ method [14], [15] with the
projective factorization method of Sturm and Triggs [24],
Martinec and Pajdla [18] solved the missing-data problem
under the perspective model. Various geometric constraints
[4], [11], [16] have also been employed to cope with the
missing-data problem. For example, Heyden and Kahl [11],
[16] proposed to use “closure constraints” for affine con-
struction, where the missing-data problem can be naturally
handled. They noted that Jacobs’ method could be regarded
to be “dual” to the closure constraints. It should also be noted
that the missing-data problem in SFM could be efficiently
solved by an incremental SVD [2]. Our own method for
solving this problem is to be found in Section 4.3.

1.2 Other Missing Data Problems under Low Rank
Constraint

Low rank-based imputation is so commonly useful that it is
not surprising that many variations have appeared in the
literature. Many applications are quite far removed from
SFM: e.g., DNA prediction [27], or in a recommender
system [3], [22]. Yet, these studies share the same intrinsic
nature: missing-data problem under low-rank constraints.

The approach used in DNA prediction [27] employs an
“SVDimpute” algorithm that bears a superficial similarity
to our approach. The starting point of that approach is to fill
in the missing values with row averages, then to use the
SVD to rank r-project, then regress the missing values
against the spanning vectors of the SVD, the process then
being reiterated until convergence. The first potential
drawback of these imputation methods is that the initial
values for the starting point are rather arbitrary. Such limits
its application to the cases where only a few components
are missing [3], [22]. Second [27], only one missing
component is updated at a time—an inefficiency. More
importantly, as will be covered in the Appendix, such a
strategy does not impute with minimal distance to the
“current” subspace. Thus, convergence cannot be ensured.
Indeed, the same criticisms as have been leveled at Tomasi
and Kanade apply: strong dependence on the starting
matrix and the imputation order [2], [3]. In addition, the
iterative imputation method has the possibility of exhibiting
“bad behavior” (see the Appendix), i.e., the estimate goes
further from the underlying optimal solution as the
iteration proceeds. However, such an important issue was
overlooked in [27].

In a recommender system, the low rank constraint is
supposed to capture customer preferences and it needs to be
continually updated. However, it would be very computa-
tionally expensive toupdate the systemonlinebya traditional
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SVD. Brand [2], [3] proposed an incremental SVD to
efficiently do thiswork,making the online updatingpossible.
In what Brand calls bootstrapping [3], he reorders the matrix
to have a dense submatrix in the top left corner and
incrementally adds rows and columns using incremental
SVD updating routines. Incremental update is also desirable
in SFM problems [2], but it is beyond the scope of the present
paper.

1.3 Contributions of this Paper

The main contribution of this paper is that we provide a
means of determining which parts of the matrix should be
used in the iterative imputation/recoveryprocess. In the SFM
context, this corresponds to deciding which tracks and/or
which frames (typically the former) shouldbe exploited in the
iterative recovery process. Intuitively, the gain, on the one
hand, of usingmore data (rows and/or columns) is balanced
by the fact that extra rowsandcols carrymoremissing entries.
Rows or columns that have almost all entries missing are not
likely to bring much extra information and the extra degrees
of freedomcanmake the recovery less stable. Incorporationof
data with more missing values can cause the solution to
“wander” away from the true solution.

As a second contribution, we present an iterative
imputation strategy and prove its weak convergence.
Although falling short of a theoretical guarantee, the weak
convergence, together with our mechanism of precluding
the “wandering” of the iterative approach, ensures the
iteration to the optimal solution in almost every case. This
will be demonstrated by experiments.

1.4 Overview of the Paper

In Section 2, we first state the general missing-data problem
under the low-rank constraint, using an objective function
that is subtly different from the one in Shum’s method. In
Section 3, we analyze the central idea, used in the imputation
approach [3], [22], [27], i.e., to fill in the missing data so that
the complete vector has a minimal distance to a known low-
rank subspace. Then, we propose a new iterative method of
recovering the missing data in a large low-rank matrix and
prove its weak convergence. In Section 4, we propose a
criterion determining whether it is worth incorporating the
incomplete vectors in the iteration. In Section 5, we
experimentally compare the algorithm with Jacobs’ and
Shum’s methods. In the Appendix, we discuss some aspects
of the iterative method, including its convergence, the
“wandering” issue, a bootstrapping strategy that provides a
partial solution to the “wandering issue” (hinting at a more
complete solution), and the relation to other approaches.

2 THE DEFINITION OF THE PROBLEM AND ITS
NONLINEAR NATURE

2.1 The Problem

A large matrix M 2 Rm;n, which should have a low rank r,
is corrupted with noise (assumed to be i.i.d. Gaussian), and
has missing entries. The problem is to recover these missing
entries and to minimize the approximation error between
the recovered matrix, M̂M and its closest rank-r approxima-
tion, M̂M

r
:

min jjM̂M� M̂M
rjj2F ð3Þ

subject to M̂Mi;j ¼ Mi;j if Mi;j is observed. In other words, we

seek to minimize the difference between the imputed matrix

M̂M (where the missing values have been recovered but the

matrix has not been denoised) and the closest rank-r approxima-

tion of the imputed matrix M̂M
r
(now imputed and denoised).

Note: The minimization objective is different from that in

Shum’s approach [23], where the objective is to recover the

matrix factors that minimize the reprojection error of the

“nonmissing” data, i.e., the sum of the square of the difference

between known elements in the incomplete matrix and the

corresponding elements in the new recovered matrix, which

is exactly of low-rank. Moreover, Shum’s formulation

incorporates weighted errors—an elaboration that can be

extremely effective if one has error covariance estimates that

can be exploited.Weighted error norms are beyond the scope

of this paper and, so, we express Shum’s formulation as:

min jjM� R̂RŜSjj2F nonmissing: ð4Þ

In essence, (4) predisposes one to directly seek the

factors, and to perform imputation and denoising together.

This suggests different implementation strategies, but the

solutions to both formulations should be equivalent. Of

course, given different implementation strategies, the

stability and convergence properties can differ.

2.2 Nonlinearity of the Problem

Obviously, Shum’s formulation (4) is nonlinear: In fact, it is

bilinear in the factors R and S. Here, we show the intrinsic

nonlinearity of our formulation (3).
Suppose M 2 Rm;n. Its closest rank-r matrix, measured

by the Frobenius norm, is Mr ¼ Ur�rðVrÞT ¼
Pr

i¼1 �iuiv
T
i ,

with M�Mrk k2F¼
Pp

i¼rþ1 �
2
i [8], where p ¼ minðm;nÞ and

f�2
i g are the nondescending eigenvalues of MTM.
Suppose M has some missing entries fMi;jjði; jÞ 2 �g,

where � ¼ fði; jÞjMi;j is unknown, 1 � i � m; 1 � j � ng.
Ei;j 2 Rm;n, has all zero entries, except a one at ði; jÞ. Let the
recovered matrix be M̂M, M̂M ¼ �MMþ

P
ði;jÞ2� ki;jEi;j, where

�MMi;j ¼
Mi;j ði; jÞ =2�
0 ði; jÞ 2 �:

�

The characteristic polynomial of M̂MTM̂M, pð�Þ, is a high-

order polynomial of � and ki;j. The equation, pð�Þ ¼ 0, has

n nonnegative roots for any fki;jg, because M̂MTM̂M is

positive semidefinite. The problem reduces to finding

fk̂ki;jg, which minimizes the sum of the least n� r roots of

the equation, pð�Þ ¼ 0. This is a nonlinear problem.
Consider a simple case, M 2 R10;10 with a missing entry

M1;1. Suppose M should be of rank 4, if it were noise free

and had no missing entries. Its characteristic polynomial,

pð�; tÞ, where t denotes the missing entry, is of the form:

pð�; tÞ ¼ �10 þ f2ð�Þt2 þ f1ð�Þtþ f0ð�Þ ¼ �10 þ
P9

i¼0 �
igiðtÞ,

where fið�Þ ¼
Pj¼9

j¼0 fi;j�
j and giðtÞ ¼

Pj¼2
j¼0 gi;jt

j, and fi;j and

gi;j are determined byM. This equation is nonlinear and the

problem of minimizing the sum of the least six roots is very

complicated. If there are many missing entries in the matrix,

the problem appears intractable from this point of view.
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3 AN ITERATIVE IMPUTATION METHOD

In this section, an iterative algorithm, based on the
imputation principle, is proposed, and we prove a weak
convergence of the iterative algorithm.

3.1 Minimization of the Distance of a Vector with
Missing Entries to a Known Subspace

The key starting point is to “grow” a complete matrix by
adding rows or columns, filling in thosemissing entries in the
new rowsor columns.Without loss of generality,we consider
only the case of column-wise growth of the complete matrix.
Thus, suppose we have a complete matrix,M 2 Rm;n, which
should be of rank r (r � m;n) if it were noise-free; and
another vector x 2 Rm, with missing components. Ideally,
½M;x� should be also of rank r if both of themwere noise-free
and complete. Suppose the first k (k � m� r) components of
x (i.e., x1:k) are missing (swapping rows if necessary). The
imputation method finds a linear combination of column
vectors in M, fitting x the best [2], [27]:

x̂x1:k ¼ U1ðUT
2U2Þ�1UT

2 xkþ1:m; ð5Þ

where, by SVD, the rank-r projection of M is

Mr ¼ UdiagðsÞVT ¼ U1

U2

� �
diagðsÞVT ;

and U1 is the upper k rows of U and U2 is the rest of U.
Intuitively: x̂x is the closest point to the subspace SpanU.

Because this property is crucial in proving the convergence
in Section 3.3, we give a formal proof here.

Theorem 1. The estimate x̂x, obtained from (5), is the closest point
to the subspace SpanU.

Proof. For any estimate, ~xx, suppose UT~xx ¼ ~cc:

~xx�UUT~xx
�� ��2

F
¼ ~xx�U~cck k2F ¼ ~xx1:k �U1~cck k2F

þ xkþ1:m �U2~cck k2F � xkþ1:m �U2ĉck k2F ;

where the equality holds iff~cc is the LS solution ĉc forU2c ¼
xkþ1:m and ~xx1:k =U1ĉc. tu
Note:Although thesolutionby(5) isoptimal in termsof the

distance between the vectorwithmissingdata and the known
subspace, it is not true for the newsubspace of ½M; x̂x�; because
the new subspace depends not only onMM, but also on x̂x.

3.2 An Iterative Algorithm for the Problem (Iter)

In this section, we present an iterative algorithm (called
Iter) to solve the nonlinear problem defined in Section 2.1.
Though Iter performs well in the vast majority of cases, it
does not always converge to a good solution. Hence, this
core algorithm will be improved in Section 4.

Algorithm (Iter)

1. Starting from a complete submatrix: Suppose, with-
out loss of generality, that M, after some row and
column exchanges, has a block representation:

A B
C D

� �
;

where all entries in A are known, and some entries
in B, C, and D are missing. For example, permute
columns so that columns with least missing values

are on the left and permute rows so that rows with
least missing values are toward the top. We do not
need the largest submatrix—any A of size 2r� 2r or
larger will do.

2. Initialization—growing a complete submatrix:

a. Column-wise filling. First, consider the subma-
trix ½A B �. Recover B̂B from A by (5) and
obtain

A B̂B1 B2

C D1 D2

� �
;

where the missing entries in B̂B1 have been
recovered and the missing entries in B2 cannot
be recovered. Note: This induces a split of
submatrix D.

b. Row-wise filling. Similarly, recover ½C D1 �
from ½A B̂B1 �, and obtain

A B̂B1 B2

ĈC1 D̂D11 D12

C2 D21 D22

2
4

3
5:

Note: After Step (b),

A B̂B1

ĈC1 D̂D11

� �

is now A, the complete submatrix, in the block

representation of

A B
C D

� �
;

B2

D12

� �
;

C2 D21½ � and D22 now are B, C, and D,
respectively.

After Step (a), check whether all the missing entries
have been recovered. If so, terminate the initialization
step and go to the iteration step; if not, go to Step (b).
After Step (b), check for completion again. If all the
entries have been recovered, go to the iteration step. If
not, check the following condition: Is the number of
the nonrecovered entries before Step (a) the same
number as after Step (b)? If so, themissing entries inB,
C, and D cannot be recovered. If the number of
nonrecovered entries decreases, continue the initiali-
zation Step (a) by regarding the recovered entries as
“nonmissing.” (Note:Althoughgrowing the complete
submatrix to obtain the initial complete matrix, as
described here, is somewhat iterative, we prefer to
view this as an initialization step to the refinement
iterations that follow in the next step.)

After this initialization procedure, we obtain a
recovered matrix M̂M1, which is complete; and we
prepare for the iterative stage by setting a conver-
gence measure d0 ¼ 1.

3. Iteration-refining the complete matrix: From M̂Mi,
obtain its closest rank-r approximation by SVD:
M̂M

r

i ¼ Ui�iV
T
i . Compute the rank-r approxima-

tion error di ¼ kM̂Mr

i � M̂MikF . If

di�1 � di < "; ð6Þ
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terminate the iteration; else, from Ui, recover the
missing entries inB,C, andD by (5), and obtain B̂Biþ1,
ĈCiþ1, and D̂Diþ1. Set

M̂Miþ1 ¼ A B̂Biþ1

ĈCiþ1 D̂Diþ1

� �
:

3.3 The Convergence of the Iterative Algorithm

In this section, we prove a weak convergence of the iterative
imputation algorithm above (thus, the algorithm is inde-
pendent of the initial matrix when the matrix has not been
badly corrupted by the noise or by the missing data—as
experimentally verified).

Theorem. The iterative algorithm above converges to a local
minimum.

Proof. Suppose m is an arbitrary column of M, and its
estimates are m̂mi and m̂miþ1 at the ith and the ðiþ 1Þth
iteration steps, respectively.

M̂M
r

i � M̂Mi

��� ���2
F
¼

X
all m

m̂mi �UiU
T
i m̂mi

�� ��2
�

X
all m

m̂miþ1 �UiU
T
i m̂miþ1

�� ��2
�

X
all m

m̂miþ1 �Uiþ1U
T
iþ1m̂miþ1

�� ��2
¼ M̂M

r

iþ1 � M̂Miþ1

��� ���2
F
:

The first inequality is from Theorem 1, and the second
from the SVD theorem [8]. tu
Note: There are many ways to detect/characterize

convergence. Another condition for the convergence, not
so rigorous as (6), is to check the variation of the missing
entries, i.e.,

jjM̂Miþ1 � M̂MijjF < "0: ð7Þ

Condition (7) is easier to check. However, (7) is stronger
than (6), and it may happen that (7) fails to indicate
convergence. The cases, nonconvergent measured by (7),
are described as divergent in Section 5.1 and Section 5.2.

4 SVD’S DENOISING CAPACITY VERSUS MISSING

DATA

Vectors, with only a few “nonmissing” components, may
cause the iteration to “wander away” from the true solution.
Moreover, even if the optimal solution, defined as in (3), can
be obtained,1 we experimentally find that these recovered
vectors may degrade the accuracy that might have been
gained from the other reliable data, alone. We have
experimented, with some success with various strategies
to detect and rectify this (see the Appendix), however, the
true solution will be found in a closer analysis of the de-
noising process. By analyzing the SVD’s denoising capacity
[5], we present a criterion to decide whether it is worth
incorporating an incomplete vector into the iteration.

4.1 SVD’s Denoising Capacity and Its Extension to
an Incomplete Matrix

In [5], with the tool of the matrix perturbation theory [28],
the SVD’s denoising capacity is analyzed, in terms of the
size of the matrix, the noise level, and the underlying rank.
More formally, it is depicted by the following fact [5].

Result 1 (Denoising capacity of SVD). Suppose a matrix
A 2 Rm;n has a rank of rðr << m;nÞ. It is corrupted by
i.i.d. Gaussian noise producing another matrix B, which
is directly observed. Then, the expected error that still
resides in the rank-r approximation matrix, Br, is

EjBr
i;j �Ai;jj ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðmþ nÞ � r2

mn

r
ð8Þ

if the noise level �, compared with the signal level, is
small enough. Especially, as m;n ! 1, the rank-r
approximation of B approaches A, i.e., Br ! A; and if
n � k (k � r) and m ! 1,

EjBr
i;j �Ai;jj ! �

ffiffiffi
r

k

r
: ð9Þ

The advantage of the SFM factorization method can be
ascribed to the SVD’s denoising capacity. From (8), we can
see, as the size of the matrix increases, the low-rank
approximationmatrix approaches the noise-freematrix. That
is, the underlying superiority of the factorization method
when applied to a complete matrix: All the feature points are
treated uniformly so thatmost of the noise can be suppressed
if the size of the measurement matrix is large enough. Fig. 1
shows the SVD’s denoising capacity.

However, SVD is not directly applicable when there is
somemissing data in thematrix. A possible solution is to first
recover the missing data, using, for example, the iterative
imputationmethod above; then to SVD the recoveredmatrix.
However, when there are a lot of missing components, a
vector with only a few “nonmissing” components, might
degrade the accuracy obtainable from the other reliable data.
Yet, using only a small complete submatrix may not achieve
optimal denoising ability—clearly there is a trade off here.
This is illustrated in Fig. 2: as the missing percentage
increases, the performance deteriorates. A natural question
arises: Is it possible to find a submatrix, complete or incomplete,
which is more reliable than the whole matrix? From (8), the
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Fig. 1. SVD’s denoising capacity. The abscissa is the number of
columns of the square matrix, and the ordinate is the error in the rank-4
approximation matrix. Three curves are drawn: the upper one is the
RMS error in the noise-corrupted matrix, the smooth dashed one is the
expectation of the RMS error in the rank-4 approximation matrix, and the
other nonsmooth one is the result, simulated by the computer. The latter
two traces are so close as to be hard to distinguish from each
other—confirming the theory.

1. With synthetic data, or real data with artificial occlusion, it is, of
course, easy to check for divergence and to assess how badly the solution
has been degraded by the addition of one or more columns with large
missing data and/or large amounts of noise.



denoising capacity of the SVD is dependent on the ratio
between ðmþ n� rÞr and mn: The former is the number of
the independent elements of the low-rankmatrix [23] and the
latter is the number of the variables in the matrix.2 From this
fact, we postulate that the incomplete matrix approximately
has similar “denoising capacity.”

Hypothesis 1 (the denoising capacity of the incomplete

matrix). Suppose there are p (p � ðmþ n� rÞr) “nonmiss-
ing” components in a matrix B, and each row (column) has at
least r “nonmissing” components. The best estimate of B, B̂B,
should have the following property:

EjB̂Br
i;j �Ai;jj ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðmþ nÞ � r2

p

s
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðmþ nÞ � r2

mn

r ffiffiffiffiffiffiffiffi
mn

p

r

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðmþ nÞ � r2

mn

r ffiffiffiffiffiffiffiffiffiffiffi
1

1� �

s
;

ð10Þ

where � is the percentage of the missing data.

Compared with the denoising capacity of the complete

matrix, the error in the incomplete matrix should increase byffiffiffiffiffiffi
1

1��

q
as a function of the missing percentage. The RMS error

index of the iterative algorithm approximately follows ð1�
�Þ�0:7 (see Fig. 2), when the percentage is less than 0.5—not

exact agreement but still useful.3

We employ (10) as a criterion as to whether it is worth
incorporating a vector, with missing data, into the iteration.
For an incomplete matrix with a rank of r, all of whose
columns and rows have at least r “nonmissing” compo-
nents, we define its unreliability as the ratio between the
number of its independent variables and the number of
nonmissing components:

c ¼ rðmþ nÞ � r2

p
: ð11Þ

Thus, we propose to use the following strategy: first, use
the iterative algorithm in Section 3.2, to recover the most
reliable incomplete submatrix, which has the minimal

unreliability ratio; then, project other columns (rows) on
it, if required, using the imputation method. Specifically for
SFM, our strategy is: First, reconstruct the 3D scene and the
cameras by the factorizing the most reliable measurement
matrix (obtained by the algorithm in Section 4.3); then to
estimate the positions of other feature points and other
camera matrices, using the techniques in [26].

4.2 The Minimal Unreliability Ratio in SFM

It is an NP-hard problem to find the submatrix that has the
minimal unreliability ratio. Here, we propose a simple
approach: to iteratively exclude the vector(s), which has the
least “nonmissing” components among the retained subma-
trix, until the unreliability ratio begins to increase.Obviously,
only a local minimum can be obtained, in general. However,
in many cases, such as the SFM problem and the recommen-
der system, we usually have a thin matrix, i.e., it has a large
width or height. In the following discussion, we suppose,
without loss of generality, we have an incomplete matrix
whose width is much larger than its height. We then sort the
columns so that the columns with the least missing entries are
toward the left. Now, we simply must find a “cut” point,
beyond which to exclude unreliable columns. Indeed, if we
restrict the exclusion to columns, the optimal property can be
proven. Without loss of generality, suppose n >> m >> r,
and the nonmissing number in the ith column, ki, is
descending, i.e., ki > kiþ1 for 1 � i < n. The unreliability
ratio of the submatrixMl (the left l columns ofM), is:

cl ¼ ðmþ l� rÞr
�Xl

i¼1

ki: ð12Þ

We only need to prove: cl > clþ1 ) cl�1 > cl and cl <
clþ1 ) clþ1 < clþ2. That is, the curve cl has oneminimum. The
first can be easily proven: cl > clþ1 , cl >

r
klþ1

) cl >
r
kl
,

cl�1 > cl. Please note cl; r; kl are positive numbers. The second
fact can be similarly proven.

4.3 Algorithm (IterPart)

In this section, we propose another algorithm, which still
uses Iter, in Section 3.2, at its core.

1. Use quick cull of cols(rows) that are not reasonable
to iteratively impute (Section 4.2).

2. Use the “sweeping” initialization of the core algo-
rithm (Section 3.2). This could be augmented with a
bootsrapping strategy (Appendix), but such appears
to be unnecessary in all of our experiments.

3. Use error norm monitored iteration of the core
algorithm to convergence (i.e., the iteration step in
Iter, in Section 3.2).

4. Finally, recover the “hopeless” (the entries not
recovered by 1-3), if one really must, with another
approach—e.g., Tomasi-Kanade. These portions may
not be recovered well, but at least they will be
somewhat recovered and they will not pollute the
accuracy of the previously recovered portion.

In short, IterPart is an improvement on Iter that benefits
from our heuristic approach to deciding which of the entries
are worth recovering directly. The difference is in Step 1 (to
predetermine where the core of reliable information is likely
to be) and Step 4 (optional recovery of those parts that are
likely to be unreliable). This approach tends to converge
more often than other methods.
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2. Please note that in Shum’s formulation [23], the mean is also
considered so, in that case, there are ðmþ n� rÞrþ n independent
variables.

3. The exponent may vary in different settings: with different-size matrix
or with different underlying rank. However, the optimal performance is
generally better than ð1� �Þ�1.

Fig. 2. The optimal performance of the iterative algorithm. The abscissa
is the missing percentage, � and the ordinate is RMS error for the
iterative algorithm. Four curves are drawn: the upper dotted one is
ð1� �Þ�1, the lower solid oneð1� �Þ�1=2, the solid one in the middle is
ð1� �Þ�0:7, and the dashed one in the middle is the optimal performance
of the proposed iterative algorithm ( Section 3.2).



4.4 Discussion

IterPart (Section 4.3) performs almost the same as Iter
(Section 3.2) when there are only a few missing components.
Suppose the matrix is very large: n >> m >> r. Then, the
unreliability ratio for the completematrix is about r=m. Thus,
if each column (or a row) has less than r (or nr=m) missing
components, the whole matrix is the most reliable one; i.e.,
IterPart is the same as Iter. Moreover, if the missing
percentage is comparatively low, both of them are expected
to have similar performance, as will be validated by
experiments.

When there are a lot of missing components, IterPart
should perform better than the Iter. Generally, each column
(row) in the most reliable submatrix has more than
2r nonmissing components; because the most reliable matrix
would generally have an unreliability ratio less than 0.5. If
the matrix can be recovered, there should be ðmþ n� rÞr
nonmissing components at least, i.e., the unreliability should
be less than 1. The unreliability ratio decreases as a result of
the cutting processes. The vectors with only r nonmissing
components are retained in the most reliable matrix only if
the whole incomplete matrix has an unreliability ratio of 1.
We also note that Iter has a risk of divergence, even when
employing an additional “bootstrapping” strategy outlined
in the Appendix. IterPart generally, does not have such
problems, even without the aid of bootstrapping, as will be
demonstrated by experiments.

5 EXPERIMENTS

In this section, we compare the performance of eight
approaches: Iter (proposed in Section 3.2), its variant:
IterPart (proposed in Section 4.3), Jacobs’s three methods:
(rankr “Jacobs1,” rankrsfm “Jacobs2,” and rankrsfm_tpose
“Jacobs3”), and Shum’s method, also with three variants:
Shum1, Shum2, Shum3 (starting from Jacobs’ methods
above). We use rank4 versions of Jacobs routines, side-
stepping the erroneous centroid subtraction in the presence
of missing data [11], [16]. We present three groups of
experiments, one using synthetic data, another from the box
sequence, which was also used by Jacobs [14], [15], and the
other from the dinosaur sequence, which is somewhat more
challenging.

We focus on stability since Iter, Shum1, Shum2, and Shum3
have almost the same performance when they converge.
IterPart has a very small risk of divergence. It should be
very stablebecauseonly themost reliable submatrix isused in
the iteration, where each row (column) generally has more
than 2r nonmissing components and rþ 1 at least. Indeed, no
divergent casehasbeen found inall 20,000 casesweexamined
(20-noise-level� 10-level-of-missing-percentage� 100-times
repetition).

5.1 Synthetic Data in an 8-Frame-and-40-Point
Sequence

As in [11], [16], all the synthetic image data is generated this
way: The 3D feature points are uniformly distributed in a
cube, within [-500, 500]*[-500, 500]*[-500, 500] units; the
cameras are placed around 1,000 units away from the origin.
Thus, the 2D image size is about 500*500. Then, different
levels of Gaussian noise, standard deviation from 1 to 20, are
added into the 2D feature points. Because the proposed
algorithmhas to start fromacomplete submatrix,we suppose

that the first 8� 8 submatrix is always nonmissing and the
missing entries are then randomly distributed in the rest of
the matrix. In addition, in order to have a recoverable
incomplete matrix, we make sure that each row/column of
the incomplete matrix has four nonmissing entries at least.
The simulation repeats 100 times for each setting.

The experimental results under noise level of 1, 5, 10, 15,
and 20 are shown in Fig. 3. Please note, we do not include
those divergent cases for the approaches of Iter, Shum1,
Shum2, and Shum3 (if theRMSof any iterative algorithmshas
a magnitude of three times or more than the noise level, the
algorithm is regardeddivergent); because thedivergent cases
would require a greatly expandedRMSaxis. Fig. 4 depicts the
convergence rate for the iterative algorithms. Since the
convergence rate is strongly dependent on the missing
percentage, we only compare the average convergence rates
(over different noise levels) for the samemissing percentage.

We can see, from Fig. 3, that the proposed iterative
algorithm (Iter) has almost the same performance as Shum’s,
and that these four curves (Iter and the three versions of
Shum’s) merging into the second lowest trace. Another
conclusion is that the more stable variant of our method
(IterPart) shows its superiority when there is a lot of missing
data,performingmuchbetter than IterandShum, as expected
from Section 4. Of Jacobs’ methods, the rankrsfm performs
best, good enough to be the initial point for the iterative
algorithms. Note, rankrsfm_tpose is much worse than rankr.
Though the three versions of Shum’s algorithm (starting from
the three versions of Jacobs as their initial matrix) perform
identically with Iter when they converge, Fig. 4 shows that
Iter generally converges at least as reliably. Note, the
improved algorithm, IterPart converges in 100 percent of
the experiments.

5.2 Box Sequence

Here, to test the algorithms on real data, we use the box
video, which was used in [14], [15]. The sequence consists of
40 feature points across eight frames. One frame is shown in
Fig. 5. As in Section 5.1, we suppose that eight points in four
frames are available. This 8� 8 submatrix is randomly
selected. We then randomly occlude (consider as missing)
the other feature points.

For this example, as shown in Fig. 6, the five methods
have almost the same performance: Iter, IterPart, Shum1,
Shum2, and Shum3.

5.3 Dinosaur Sequence

Here, we present an example where some data is truly
missing (i.e., not artificially occluded to simulate missing
data). 4,983 feature points were tracked over the 36-frame
“dinosaur” sequence [7] and the 20th frame is shown in Fig. 7,
where the feature points are denoted by symbol “+”. The
feature points, extracted by the Harris interest operator [10],
were obtained from Oxford (http://www.robots.ox.ac.uk/
~vgg/data/). Over the dinosaur sequence, about 90.84 per-
cent of the data ismissing and themask of the tracked feature
points is shown inFig. 8,where ablackpixel in ði; jÞmeans the
ith feature point (in abscissa) is tracked in the jth frame (in
ordinate) and a gray pixel denotes the occlusion/missing
data. Under the assumption of the affine camera, the
measurement matrix should lie in a four-dimension sub-
space. However, in this example, the perspectivity factor is
not negligible and the four-dimensional subspace does not fit
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the feature points well even without other noise. Thus, the
model error, as well as the error introduced in the feature
extraction, makes it a challenging task to recover these
missing feature points.Wenote that the projectivemodelwas

used, by Martinec and Pajdla [18], to recover the dinosaur
sequence. It is beyond the scope of this paper to tackle such a
setting, butwe find that our results, even in the inferior affine
setting, are approximately same, at least as far as one can
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Fig. 3. The reprojection RMS error of the eight methods, as described in the beginning of Section 5. The abscissa is the missing percentage, and the
ordinate is the reprojection RMS error. In (a), we depict all eight methods when the noise level is only 1 (from the best to the worst, they are IterPart,
Iter (and 3 Shums), rankrsfm, rankr, and rankrsfm_tpose); while, in (b), (c), (d), and (e), with noise levels of 5, 10, 15, and 20, respectively, only
six methods: three versions of Shum’s method, Iter, IterPart, and the best Jacobs’ method (“rankrsfm”), are depicted, in order to make the
comparison visible. IterPart is the best, and rankrsfm is the worst one, and the other four have almost the same performance.



determine from gross statistics, as Martinec and Pajdla’s
results [18].

The core iterative algorithm (Iter) fails on the total
sequence because of too much missing data and strong
noise. By excluding the vectors with a few nonmissing
components (IterPart), the most reliable matrix has
36 frames and 336 feature points, with an unreliability ratio
of 0.2892, where each point has been tracked over more than
six (> 6) frames, and each frame trackedmore than 20 feature
points. We compare all algorithms using this same subset of
“reliable” data.

First, by the core iterative method in Section 3.2, we
reconstruct the 336 (“most reliable”) feature points, as
shown in Fig. 9, where about 77 percent of the data is
missing. The result by Jacobs’ method under the affine
camera, as shown in Fig. 10a, is unsatisfactory. When the
initial result is not accurate enough, Shum’s approach tends

to diverge, or become trapped in a local minimum, as
shown in Figs. 10b and 10c. The recovered tracks by the
proposed method Iter are shown in Fig. 10d. (Which is, of
course, the same as that by IterPart since we have pruned.)

By combining Jacobs’ method [14], [15] and Sturm and
Triggs’ projective factorization method [24], a good result
over the whole sequence was reported [18]: The mean
reprojection error per image point, measured by pixels, was
reported as 1.76 pixels and the maximal reprojection error
was reported as 73.9 pixels. The mean error and maximal
errorwere reported as 0.64 and 41.5 pixels (respectively) after
bundle adjustment.

However, the above indexes (mean error and maximal
error) may be sometimes misleading in assessing the
performance of the algorithms as we demonstrate here.
Using the stable variant of the proposed iterative method
(IterPart), we conducted some experiments over two selec-
tions of the data: 1) thewhole 4,983 feature points and 2) with
only the 2,683 featurepoints thatwere trackedovermore than
two frames. (2,300 feature points were tracked only over two
frames in the dinosaur sequence!) Our results of the
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Fig. 4. The convergence rate of four iterative methods against the
missing entry fraction. Dotted curve with plus (+): Iter; solid curve with
circle: Shum + rankrsfm; dotted curve with star (*): Shum +
rankrsfm_tpose; and solid curve with plus (+): Shum + rankr.

Fig. 5. One frame of the box sequence.

Fig. 6. The performance on the box sequence: (a) The RMS reprojection error of the eight methods are depicted: triangle (4) for five approaches
(Iter, IterPart, and three Shum approaches), circle (o) for rankrsfm_tpose, star (*) for rankr, and cross (+) for rankrsfm. Note: Five approaches (Iter,
IterPart, and three Shum approaches) have almost the same performance, so those five curves merged into one curve at the bottom. (b) The
convergence rate of the four iterative methods are depicted: circle (o) for Iter, triangle (4) for Shum + rankrsfm_tpose, star (*) for Shum + rankr, and
cross (+) for Shum + rankrsfm.



reprojection tracks, for 4,983 and 2,683 feature points,
respectively, are shown in Figs. 11a and 11b. Obviously, the
result from 2,683 features is much better than that from
4,983 features. The recovered tracks should be approximately
elliptical, because the sequencewas takenwhile the dinosaur
was on a rotating turntable [7]. Note: all the wild recovered
tracks in the first experiment are from the 2,300 feature points
which have been tracked over only two frames—thus, the
likely reason for such sensitive behavior in Fig. 11a is that
some feature points are tracked only over two frames (any
noise in these features is likely to be influential). Contrast the
visual quality with the impression conveyed by the mean/
maximal error for 4,983 and 2,683 features, which are
respectively 1.8438/72.4467 and 2.4017/72.4467 pixels; ob-
viously, these measures alone are misleading since the
reconstruction from the case with only 2,683 features scores
worse although it has no wild recovered tracks. In fact, the
mean/maximal error for the 2,300 feature points tracked over
only two frames is only 0.4088/ 7.8093 pixels. Since we only
have themeasures, as reported byMartinec and Pajdla [18], it
is not clearwhether their resultsmayhave included suchwild
(and wrong) recovered tracks.

6 CONCLUSION

The main contribution of this paper is the development of a
criterion one can use to recover the most reliable submatrix—
i.e., to decide which parts of a matrix contain too many
missing values to be included in the imputation. We also
propose an iterative algorithm to employ the above criterion
to the problem ofmissing data in a large low-rankmatrix and
we prove its convergence. In the cases, where the matrix has
been badly corrupted by the missing data, the approach we
propose is superior to other approaches. We avoid the NP-
hard problem of finding the largest complete submatrix, as
one does not need to start with a very large complete
submatrix in our approach. Due to the convergence (toward

the optimal solution, as demonstrated by the experiments),
one can expect to arrive at the same solution even when
starting from different complete submatrices.

As a result of our work, we also draw to the attention of
the reader a salutary message regarding the use of simple
error measures in making decisions about the superiority of
one algorithm over another. It may be the case, as we
demonstrated, that an approachwith several very bad tracks,
scores better than a method with generally very good tracks.
Some care must be taken in assessing the contributions of
studies that report only a single such measure (see also
Appendix A.4).

APPENDIX

A.1 “Bad-Behavior” and a Bootstrapping Strategy

As noted in Section 1, for the proposed core iterative
imputation method (Iter) only the convergence to a local
minimum is proven. The worse case scenario is that, some
components “wander away” from the underlying ground
truth as the iterationproceeds.We call this phenomenon“bad
behavior.” Some vectors have polluted the first r components
and the remaining data cannot “correct” the values that have
“wandered.” By an example [6], it has been shown that, if one
data (an outlier) has 10 times the energy as the sumof the rest
of the data, the outlier becomes the first principal component,
and the first and the second original principal components
become the other two principal components, approximately.
Such a fact can be easily proven by the matrix perturbation
theory [28], by regarding the outlier as the signal matrix and
the original signal matrix as the perturbation.

If we followed the algorithm Iter, outlined in Section 3.2,
we may observe this in a few cases (although very rare, it does
occur), when the percentage of the missing data is very
high. The problem is with the initialization step. In the bad
cases, the initialization step in the algorithm usually needs a
few loops to obtain a complete initial matrix. However, no
refinement is made on the newly increased submatrix
before it continues to absorb other columns/rows.

In practice, such a phenomenon can be easily detected.
From experiments, we found that the energy in jjM̂Miþ1 �
M̂Mijj2F concentrates in a few missing-values, mostly in one or
two columns (rows). Having detected the likely “wander-
ing,” we can attempt to “purify” the matrix in the initializa-
tion phase or in the iteration phase.We can first regress these
bad (one or two) columns (or rows) against the other columns
(or rows) and then continue the iteration. Another is to restart
the algorithm: In the initialization step, using those columns
(or rows) that do not produce such bad behavior producing a
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Fig. 7. The 20th frame of the dinosaur sequence.

Fig. 8. The missing data (gray) and measured data (black) for the

dinosaur sequence.

Fig. 9. The 336 tracked feature points over 36 frames.



partially complete matrix; then regress the columns (rows)
with bad behavior against the partially complete matrix
before restarting the iteration. The second strategy, experi-
mentally, performs better than the first.

The “afterward” bootstrapping strategy is not ideal
because it is time consuming. Generally, the wandering-
away behavior occurs with those columns, with only r (or
slightlymore than r) “nonmissing data,” because the noise in
such cases can be influential, especially when the subspace is
ill-conditioned. For other columns, with only a few missing
components, the imputation method of (5) is intrinsically an

overdetermined system; therefore, it can resist noise to some

extent and, consequently, it is unlikely that the wandering-

away behavior occurs with these vectors.
Thus,we propose the following bootstrapping strategy4 to

overcome the wandering-away: To recover those columns

(rows)with fewermissingvalues first, i.e., to recover themore

stable vectors in the inner initialization loops. In order to

reduce the computation loops in the initialization step, we
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Fig. 10. The 336 recovered tracks by the Jacobs’ and Shum’s and the proposed methods: (a) Jacobs, (b) Shum’s result after 100 iterations,

(c) Shum’s result after 400 iterations, and (d) the 336 recovered tracks by Iter.

Fig. 11. The recovered tracks over 36 frames: (a) for 4,983 points and (b) for 2,683 points.

4. In [3], a similar bootstrapping strategy was employed to make the
imputation method robust.



suggest that only those columns (rows), with more than (or
equal to) 2r nonmissing data, should be incorporated into the
complete submatrix, by using the imputation method (5).

Such a strategy raises another issue: in some cases, the
complete submatrix stops increasing because no incomplete
vector has more than (or equal to) 2r “nonmissing” values.
In such cases, one can temporarily relax the constraint of
requiring 2r “nonmissing values”—using columns (rows)
with 2r� 1 “nonmissing values” (even as low as r if need
be) to break the impasse and then resume with the more
conservative demand of at least 2r “nonmissing values.”
This bootstrapping strategy can increase the robustness of
the algorithm, especially when there are a lot of missing
components; while it only incurs a little computation
overhead—one or two more loops in the initialization step.
However, we have found a similarly motivated procedure
that makes this bootstrapping largely redundant (Section 4).

A.2 Revisiting the Objective Function in (3)

As stated in Section 2.1, our objective function is subtly
different from that, used in Shum’s approach [23]. However,
under the strong convergence condition (7), the error index
for the missing components,

P
ði;jÞ2� ðM̂Mi;j � M̂Mr

i;jÞ
2, where

� ¼ fði; jÞjMi;j is unknowng, approaches zero during the
iterations. Thus, the objective function of (3), under the
convergence condition of (7), is effectively same as Shum’s
objective function. Itwasprovenbyexperiments thatvirtually
the same solution is obtained by our method described in
Section 3.2 and by Shum’s method, providing both of them
converge. In practice, our approach converges far more
reliably.

A.3 Difference from the Imputation in [27]

The iterative algorithm in Section 3.2 (Iter) has been loosely
anticipated by the method in [26]. Here, we describe the
difference between the proposed algorithm in Section 3.2 and
the algorithm in [26]. As noted in the introduction, the
iterative imputation method in [27] cannot be shown to
converge, although the iteration may stop after a few loops.
The problem with the method in [27] lies in its updating
procedure in the iteration. In [27], even if there is more than
onemissing component in one column, only onemissingdata
is updated at a time; by regarding all other components
known, including othermissingdata that has been estimated.
Thus, k applications of updating are needed for a column,
where k components are missing. Note: If every incomplete
vector has only onemissing entry (an entirely unlikely event),
then the method is same as Iter, outlined in Section 3.2.
However, if there is more than one missing component the
two are not equivalent and anymethod that can only recover
one missing entry at a time raises the question: Which
imputation order should be taken? After some components
have been updated, should their old or new values be
employed in the sequential estimation for other missing
components? Generally, for any sequential updating, a
different estimate from that, by (5), would be obtained, i.e.,
the estimate in [27] does not have the nice property that it is
the closest point to the current subspace. Consequentially, no
convergence can be promised in the iterative method in [27].

A.4 RMS and Reprojection Error

Generally, the root mean square (RMS) of the reprojection
error isused toevaluate theperformanceof the reconstruction

algorithm. However, the reprojection error index, in the real
data sequence,maybemisleadingunlesswehave the ground
truth. We illustrate the reason for our cautionary note here.

In [5], it is proved that as the size of thematrix approaches
infinite, its low-rank approximation approaches the under-
lyingnoise-freematrix.Consequently, for avery largematrix,
if we compare its low-rank approximation with the noise-
corruptedmatrix, the residuals are approximately the added
noise; yet if we compare with the ground truth (the
uncorrupted matrix), the error should be around 0. From
Fig. 12, we can observe this point: a series of synthetic
measurement matrices ( ~MM) are generated and i.i.d. Gaussian
noise (0-mean-and-1-variance) is added, observing M. The
reprojection error, compared with ~MM and M, is depicted by
the dashed curve and the solid curve, respectively. We also
compare the rank-4 approximation ofM,M4, with ~MM andM,
the error is depicted by thedot-with-star curve and thedotted
curve, respectively. Obviously, the RMS indexes, against M
(upper traces—“observed/noise corrupted” data), are mis-
leading, in evaluating the performance. If we use the RMS
error against the noise corrupted measurement matrix, the
reconstruction error also increases as the size of the matrix
increases (upper two traces); contrasting with an accepted
fact that more frames produce more accurate reconstruction
[19], [25]. In contrast, the lower two traces (using “ground
truth”) show the correct trend.

Because of this, we mainly rely on the synthetic data in
evaluating the performance of the algorithms. In addition,
please note that we use a different reprojection error index,
from that in Jacobs’ paper: In our work, the RMS error is
obtained over the whole sequence, including those artifi-
cially occluded points. It makes little difference in most
cases; however, the occluded points should be included in
the evaluation, if possible, because in some pathological
cases, we can find the reprojection error for the nonmissing
data is comparatively small, while that for the whole data is
very large. In Section 5.1, we can easily find such a case:
with 50 percent data missing and a noise level of 10, where
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Fig. 12. The RMS errors in the low-rank approximation matrix and the
reprojection RMS error: the abscissa is the size of the square
measurement matrix and the ordinate is the RMS error. The dotted
with star curve and the dotted one is the RMS errors of the rank-4
approximation matrix, compared with the noise-free matrix and the
noise-corrupted matrices, respectively. The dashed one and the solid
one denote the reprojection RMS errors, compared with the noise-free
matrix and the noise-corrupted matrices, respectively.



the RMS error for the nonmissing entries is only 7.2098,
while the RMS error for the artificially missing entries/all
entries is 57.2773/38.2693, by the iterative algorithms.
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